

Linear Algebra and its Applications 336 (2001) 261-264

www.elsevier.com/locate/laa

Boolean rank of Kronecker products

Valerie L. Watts

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6 Received 31 December 2000; accepted 25 March 2001

Submitted by R.A. Brualdi

Abstract

The Boolean rank of an $m \times n$ binary matrix A is the least integer k such that A is the product of $m \times k$ and $k \times n$ binary matrices, under Boolean arithmetic. The product of the Boolean ranks of two matrices A and B is an upper bound on the Boolean rank of their Kronecker product. An example is given to show that this bound need not be tight. © 2001 Elsevier Science Inc. All rights reserved.

AMS classification: 15A23; 05C50 Keywords: Boolean rank; Kronecker product

Throughout, all matrices are Boolean. That is, each matrix is binary and arithmetic is as usual except 1 + 1 = 1. For background information on Boolean matrices see [5]. The *Boolean rank*, $r_B(A)$, of an $m \times n$ matrix A is the least integer k such that A = BC, where B is $m \times k$ and C is $k \times n$. Boolean rank is also known as *Schein rank* [5]. By convention, the Boolean rank of the all-zeroes matrix is zero. Alternatively, $r_B(A)$ may be defined as the minimum number of Boolean rank 1 matrices uv^T that sum to A under Boolean arithmetic; that is, $r_B(A)$ is the minimum number of all-ones submatrices of A that cover all of the ones of A. It follows from the alternate definition that for all $m \times n$ matrices A:

- 1. $r_{\mathrm{B}}(A) \leq \min\{m, n\};$
- 2. $r_{\rm B}(A) = r_{\rm B}(A^{\rm T});$

3. $r_{\rm B}(AB) \leq \min\{r_{\rm B}(A), r_{\rm B}(B)\}$ for all $n \times k$ matrices B;

4. $r_{\rm B}(B) \leq r_{\rm B}(A)$ for all submatrices *B* of *A*.

For other results regarding Boolean rank, see [1,2,4,5] and for more recent surveys, see [3,6].

0024-3795/01/\$ - see front matter © 2001 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 1) 0 0 3 3 8 - X

E-mail address: 6vlw@qlink.queensu.ca (V.L. Watts).

In [7], Orlin provided a graph-theoretic interpretation of Boolean rank. For a bipartite graph *G* with bipartition $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ the *bipartite adjacency matrix* of *G* is the $m \times n$ binary matrix whose *ij*th entry is 1 if x_i is adjacent to y_j and 0 otherwise. The Boolean rank of an $m \times n$ matrix *A* is the minimum number of complete bipartite subgraphs covering all of the edges of the bipartite graph *G* whose bipartite adjacency matrix is *A*. Orlin also showed that the problem of determining $r_B(A)$ is NP-complete. For more on this graphical interpretation, see [6,7].

In an $m \times n$ matrix A, row i is dominated by row j if $A_{ik} \leq A_{jk}$ for all k = 1, ..., n. The matrix A has row-domination if and only if, for some $i \neq j$, row i is dominated by row j. That is, A has row-domination means that for some $i \neq j$, $A_{ik} = 1$ implies $A_{jk} = 1$ for all k = 1, ..., n. For an $m \times n$ matrix A, define the *complement* of A to be the $m \times n$ matrix \overline{A} obtained by interchanging the zeroes and ones in A. In particular, $\overline{I_n}$ denotes the $n \times n$ matrix with zeroes on the main diagonal and ones everywhere else. Theorem 1 appears as Corollaries 1 and 2 in [1], where the proof employs a lemma of Sperner.

Theorem 1. Let A be an $m \times n$ binary matrix. If A does not have row-domination, then $r_B(A) \ge s(m)$, where

 $s(m) = \min\left\{k : m \leqslant \binom{k}{\lfloor \frac{k}{2} \rfloor}\right\}.$

If A^{T} does not have row-domination, then $r_{B}(A) \ge s(n)$. Furthermore, $r_{B}(\overline{I}_{n}) = s(n)$.

As in [4], a set of ones of *A* is *isolated* if no pair of ones are in an all-ones submatrix of *A* together. Let i(A) be the maximum number of ones in an isolated set of *A*. The alternate definition of $r_B(A)$ leads immediately to the bound $r_B(A) \ge i(A)$. The *Kronecker product* of an $m \times n$ matrix *A* and a $p \times q$ matrix *B* is the $mp \times nq$ matrix $A \otimes B$ which can be expressed as an $m \times n$ block matrix with the *ij*th block being *B* if $A_{ij} = 1$ and a zero block otherwise. Theorem 2 appears in [2] and provides bounds on the Boolean rank of the Kronecker product of two matrices.

Theorem 2. Let A and B be Boolean matrices. Then 1. $\max\{i(A)r_{B}(B), r_{B}(A)i(B)\} \leq r_{B}(A \otimes B) \leq r_{B}(A)r_{B}(B);$ 2. $i(A)i(B) \leq i(A \otimes B) \leq \min\{i(A)r_{B}(B), r_{B}(A)i(B)\}.$

The authors of [2] did not find an example where $r_B(A \otimes B) < r_B(A)r_B(B)$, although they suggested $\bar{I}_n \otimes \bar{I}_n$ as a possible candidate. Note that $i(\bar{I}_4) = 3$ and $r_B(\bar{I}_4) = 4$, so Theorem 2 implies $12 \leq r_B(\bar{I}_4 \otimes \bar{I}_4) \leq 16$. Using Theorem 3 below, it is possible to show that, in fact, $r_B(\bar{I}_4 \otimes \bar{I}_4) = 12$. A careful justification shows that $r_B(A) = i(A)$ for all $m \times n$ matrices A with $1 \leq m, n \leq 4$ and at most one of m and n is 4. Consequently, $\bar{I}_4 \otimes \bar{I}_4$ is the smallest such example in terms of order.

262

Before stating Theorem 3 and the construction which gives $r_{\rm B}(\bar{I}_4 \otimes \bar{I}_4) = 12$, some new terminology is necessary. For a Boolean rank 1 matrix $A = uv^{\rm T}$, define the *opposite* of A to be the Boolean rank 1 matrix $\tilde{A} = \bar{u}\bar{v}^{\rm T}$.

Theorem 3. Let A be an $m \times n$ binary matrix. Suppose there exists a set \mathcal{M} of Boolean rank-1 matrices with the properties:

- 1. $\sum_{M \in \mathcal{M}} M = A$ under Boolean arithmetic;
- 2. $M \in \mathcal{M}$ implies $\tilde{M} \in \mathcal{M}$;
- 3. *For each* (i, j) *with* $A_{ij} = 1$,

$$\sum_{M \in \mathcal{M}, M_{ii}=1} (M + \tilde{M}) = A$$

under Boolean arithmetic. Then $r_{\rm B}(A \otimes A) \leq 2|\mathcal{M}|$.

Proof. By Theorem 2, $r_B(M \otimes M) = r_B(M \otimes \tilde{M}) = 1$ for each $M \in \mathcal{M}$. Thus, to show $r_B(A \otimes A) \leq 2|\mathcal{M}|$, it suffices to show that $A \otimes A$ and $\sum_{M \in \mathcal{M}} [(M \otimes M) + (M \otimes \tilde{M})] = \sum_{M \in \mathcal{M}} M \otimes (M + \tilde{M})$ are the same matrix. This can be accomplished by showing these two matrices agree block by block.

The *ij*th block of $A \otimes A$ is $A_{ij}A$ and is either a zero block or A. The *ij*th block of $\sum_{M \in \mathcal{M}} M \otimes (M + \tilde{M})$ is $\sum_{M \in \mathcal{M}} M_{ij}(M + \tilde{M})$ and so by property (3) is either a zero block or A. Since $A_{ij} = 0$ if and only if $M_{ij} = 0$ for all $M \in \mathcal{M}$, it follows that the *ij*th block of $A \otimes A$ is a zero block if and only if the *ij*th block of $\sum_{M \in \mathcal{M}} M \otimes$ $(M + \tilde{M})$ is a zero block. Similarly, $A_{ij} = 1$ if and only if $M_{ij} = 1$ for some $M \in \mathcal{M}$ and consequently the *ij*th block of $A \otimes A$ is non-zero (and hence A) if and only if the *ij*th block of $\sum_{M \in \mathcal{M}} M \otimes (M + \tilde{M})$ is non-zero (and hence A). \Box

To use Theorem 3 on I_4 , consider the following six Boolean rank-1 matrices:

$$\mathcal{M} = \left\{ \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right\}$$

This set \mathcal{M} satisfies the three conditions of Theorem 3 for \bar{I}_4 . Consequently, $r_B(\bar{I}_4 \otimes \bar{I}_4) = 12$.

Since the matrices in \mathcal{M} of Theorem 3 occur in pairs, $|\mathcal{M}|$ is even. Also, because every pair of ones in an isolated set of A must be in a distinct matrix/opposite pair, it follows that $|\mathcal{M}| \ge i(A)(i(A) - 1)$. Note that for \overline{I}_4 this bound is attained.

Although Theorem 3 provides an upper bound on $r_B(A \otimes A)$, this bound will only be an improvement on the bound given in Theorem 2 when $|\mathcal{M}| \leq \frac{1}{2}r_B(A)^2$.

References

- D. de Caen, D.A. Gregory, N.J. Pullman, The boolean rank of zero-one matrices, in: Proceedings of the Third Caribbean Conference on Combinatorics and Computing, Barbados, 1981, pp. 169–173.
- [2] D. de Caen, D.A. Gregory, N.J. Pullman, The boolean rank of zero-one matrices II, in: Proceedings of the Fifth Caribbean Conference on Combinatorics and Computing, Barbados 1988, pp. 120–126.
- [3] Faun C.C. Doherty, J.R. Lundgren, D.J. Siewert, Biclique covers and partitions of bipartite graphs and digraphs and related matrix ranks of {0, 1}-matrices, Congr. Numer. 136 (1999) 73–96.
- [4] D.A. Gregory, N.J. Pullman, Semiring rank: boolean rank and nonnegative rank factorizations, J. Combin. Inform. System Sci. 8 (3) (1983) 223–233.
- [5] K.H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982.
- [6] S.D. Monson, N.J. Pullman, R. Rees, A survey of clique and biclique coverings and factorizations of (0, 1)-matrices, Bull. ICA 14 (1995) 17–86.
- [7] J. Orlin, Contentment in graph theory: covering graphs with cliques, Nederl. Akad. Wetensch. Proc. Ser. A 80 (1977) 406–424.