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Abstract

The Boolean rank of am x n binary matrixA is the least integek such thatA is the
product ofm x k andk x n binary matrices, under Boolean arithmetic. The product of the
Boolean ranks of two matrices andB is an upper bound on the Boolean rank of their Kro-
necker product. An example is given to show that this bound need not be tight. © 2001 Elsevier
Science Inc. All rights reserved.
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Throughout, all matrices are Boolean. That is, each matrix is binary and arithme-
tic is as usual except$ 1 = 1. For background information on Boolean matrices
see [5]. TheBoolean rankyg(A), of an m x n matrix A is the least integek such
that A = BC, whereB is m x k andC is k x n. Boolean rank is also known as
Schein rani5]. By convention, the Boolean rank of the all-zeroes matrix is zero.
Alternatively, rg(A) may be defined as the minimum number of Boolean rank 1
matricesuv! that sum toA under Boolean arithmetic; that iss (A) is the minimum
number of all-ones submatrices Atthat cover all of the ones &. It follows from
the alternate definition that for alt x n matricesA:

1. rg(A) < min{m, n};

2. ra(A) = rg(AT);

3. rg(AB) < min{rg(A), rg(B)} for all n x k matricesB;
4. rg(B) < rg(A) for all submatrice® of A.

For other results regarding Boolean rank, see [1,2,4,5] and for more recent sur-
veys, see [3,6].
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In [7], Orlin provided a graph-theoretic interpretation of Boolean rank. For a bi-
partite graplG with bipartitionX = {x1, ..., x,}andY = {y1, ..., y,} thebipartite
adjacency matrixof G is them x n binary matrix whoséjth entry is 1 ifx; is adja-
cent toy; and O otherwise. The Boolean rank of/anx n matrix A is the minimum
number of complete bipartite subgraphs covering all of the edges of the bipartite
graph G whose bipartite adjacency matrix & Orlin also showed that the prob-
lem of determiningg(A) is NP-complete. For more on this graphical interpretation,
see [6,7].

In anm x n matrix A, row i is dominated by row if A;x < Aj; for all k =

1,....n. The matrixA hasrow-dominationif and only if, for somei # j, row i
is dominated by row. That is, A has row-domination means that for soing j,
Ajxy =1impliesA;; =1forall k=1,...,n For anm x n matrix A, define the

complemenof Ato be them x n matrix A obtained by interchanging the zeroes and
ones inA. In particular,l, denotes the x n matrix with zeroes on the main diagonal

and ones everywhere else. Theorem 1 appears as Corollaries 1 and 2 in [1], where
the proof employs a lemma of Sperner.

Theorem 1. Let A be arm x n binary matrix. If A does not have row-dominatjon
thenrg(A) > s(m), where

s(m) = min {k S (LkJ>}

If AT does not have row-dominatiothen rg(A) > s(n). Furthermore rg(l,) =

s(n).

As in [4], a set of ones oA is isolatedif no pair of ones are in an all-ones subm-
atrix of Atogether. Let (A) be the maximum number of ones in an isolated sét.of
The alternate definition ofz (A) leads immediately to the boumg(A) > i(A). The
Kronecker productf anm x n matrixAand ap x ¢ matrixBis themp x ng matrix
A ® B which can be expressed asranx n block matrix with theijth block beingB
if A;; = 1and azero block otherwise. Theorem 2 appears in [2] and provides bounds
on the Boolean rank of the Kronecker product of two matrices.

Theorem 2. Let A and B be Boolean matrices. Then
1. max{i(A)s(B), r8(A)i(B)} < r8(A ® B) < rg(A)rs(B);
2.i(A)i(B) <i(A® B) <min{i(A)rg(B), rg(A)i(B)}.

The authors of [2] did not find an example whet(A ® B) < rg(A)rg(B),
although they suggestelj ® I, as a possible candidate. Note thaks) = 3 and
re(I4) = 4, so Theorem 2 implies 12 rB(I4 ® 1) < 16. Using Theorem 3 below,
it is possible to show that, in factg (/s ® 14) = 12. A careful justification shows
thatrg(A) = i(A) for all m x n matricesAwith 1 < m, n < 4 and at most one oh
andn s 4. Consequently; ® I4 is the smallest such example in terms of order.
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Before stating Theorem 3 and the construction which gigds ® 1) = 12,
some new terminology is necessary. For a Boolean rank 1 méatexuv T, define
the oppositeof A to be the Boolean rank 1 matrik = iiv .

Theorem 3. Let A be anm x n binary matrix. Suppose there exists a s#t of
Boolean rank-Imatrices with the properties

1. Y yes M = Aunder Boolean arithmetic

2. M e 4 impliesM € ./,

3. For each(i, j) with 4;; =1,

Y M+m=4
Me.u ,Mij=1
under Boolean arithmetic.
Thenrg(A ® A) < 2|.4)|.

Proof. By Theorem 2y5(M @ M) = rg(M ® M) = 1 for eachM € ./. Thus, to
showrg(A ® A) < 2|.#/, it suffices to show that @ A and)_,,. ,[(M ® M) +
(M M)] = Yomeas MM+ M) are the same matrix. This can be accomplished
by showing these two matrices agree block by block.

Theijth block of A ® A is A;; A and is either a zero block @&. The ijth block
of Y yye sy M ® (M +M)is Yy, , Mij(M + M) and so by property3) is either a
zero block orA. Since 4; = O if and only if M;; = O for all M < ., it follows that
theijth block of A ® A is a zero block if and only if thgth block of ;. , M ®
(M + M) is a zero block. Similarlyd;; = 1ifandonlyifM;; = 1 for some Me ./
and consequently thigh block of A ® A is non-zero (and hena®) if and only if the
ijth block of 3", , M ® (M + M) is non-zero (and hend®). [

To use Theorem 3 ofy, consider the following six Boolean rank-1 matrices:

0 0 1 1 0 0 0 O 0 1 0 1
= 0 0 1 1 0 0 0 O 0 0 0 O
~]1|/0 0 O Of’f2 12 0 O/’|0O 1 O 1y’
0 0 0 O 1 1 0 O 0 0 0 O
0 0 0 O 0 1 1 0 0 0 0 O
1 01 0 0O 0 0 O 1 0 0 1
0 0 0 0/’(0 0 O O)j’f1 0 O0 1
1 0 1 O 0 1 1 0 0O 0 0 O

This set./ satisfies the three conditions of Theorem 3fprConsequently;z (/4 ®
Iy) =12.

Since the matrices inZ of Theorem 3 occur in pair$,#| is even. Also, because
every pair of ones in an isolated set Afmust be in a distinct matrix/opposite
pair, it follows that|.#| > i(A)(i(A) — 1). Note that forl, this bound is attained.
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Although Theorem 3 provides an upper boundrgfA ® A), this bound will only
be an improvement on the bound given in Theorem 2 wh&h< %rB(A)Z.
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