Boolean rank of Kronecker products

Valerie L. Watts
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6
Received 31 December 2000; accepted 25 March 2001
Submitted by R.A. Brualdi

Abstract

The Boolean rank of an $m \times n$ binary matrix A is the least integer k such that A is the product of $m \times k$ and $k \times n$ binary matrices, under Boolean arithmetic. The product of the Boolean ranks of two matrices A and B is an upper bound on the Boolean rank of their Kronecker product. An example is given to show that this bound need not be tight. © 2001 Elsevier Science Inc. All rights reserved.

AMS classification: 15A23; 05C50
Keywords: Boolean rank; Kronecker product

Throughout, all matrices are Boolean. That is, each matrix is binary and arithmetic is as usual except $1+1=1$. For background information on Boolean matrices see [5]. The Boolean rank, $r_{\mathrm{B}}(A)$, of an $m \times n$ matrix A is the least integer k such that $A=B C$, where B is $m \times k$ and C is $k \times n$. Boolean rank is also known as Schein rank [5]. By convention, the Boolean rank of the all-zeroes matrix is zero. Alternatively, $r_{\mathrm{B}}(A)$ may be defined as the minimum number of Boolean rank 1 matrices $u v^{\mathrm{T}}$ that sum to A under Boolean arithmetic; that is, $r_{\mathrm{B}}(A)$ is the minimum number of all-ones submatrices of A that cover all of the ones of A. It follows from the alternate definition that for all $m \times n$ matrices A :

1. $r_{\mathrm{B}}(A) \leqslant \min \{m, n\}$;
2. $r_{\mathrm{B}}(A)=r_{\mathrm{B}}\left(A^{\mathrm{T}}\right)$;
3. $r_{\mathrm{B}}(A B) \leqslant \min \left\{r_{\mathrm{B}}(A), r_{\mathrm{B}}(B)\right\}$ for all $n \times k$ matrices B;
4. $r_{\mathrm{B}}(B) \leqslant r_{\mathrm{B}}(A)$ for all submatrices B of A.

For other results regarding Boolean rank, see $[1,2,4,5]$ and for more recent surveys, see $[3,6]$.

[^0]In [7], Orlin provided a graph-theoretic interpretation of Boolean rank. For a bipartite graph G with bipartition $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ the bipartite adjacency matrix of G is the $m \times n$ binary matrix whose $i j$ th entry is 1 if x_{i} is adjacent to y_{j} and 0 otherwise. The Boolean rank of an $m \times n$ matrix A is the minimum number of complete bipartite subgraphs covering all of the edges of the bipartite graph G whose bipartite adjacency matrix is A. Orlin also showed that the problem of determining $r_{\mathrm{B}}(A)$ is NP-complete. For more on this graphical interpretation, see [6,7].

In an $m \times n$ matrix A, row i is dominated by row j if $A_{i k} \leqslant A_{j k}$ for all $k=$ $1, \ldots, n$. The matrix A has row-domination if and only if, for some $i \neq j$, row i is dominated by row j. That is, A has row-domination means that for some $i \neq j$, $A_{i k}=1$ implies $A_{j k}=1$ for all $k=1, \ldots, n$. For an $m \times n$ matrix A, define the complement of A to be the $m \times n$ matrix \bar{A} obtained by interchanging the zeroes and ones in A. In particular, \bar{I}_{n} denotes the $n \times n$ matrix with zeroes on the main diagonal and ones everywhere else. Theorem 1 appears as Corollaries 1 and 2 in [1], where the proof employs a lemma of Sperner.

Theorem 1. Let A be an $m \times n$ binary matrix. If A does not have row-domination, then $r_{\mathrm{B}}(A) \geqslant s(m)$, where

$$
s(m)=\min \left\{k: m \leqslant\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}\right\} .
$$

If A^{T} does not have row-domination, then $r_{\mathrm{B}}(A) \geqslant s(n)$. Furthermore, $r_{\mathrm{B}}\left(\bar{I}_{n}\right)=$ $s(n)$.

As in [4], a set of ones of A is isolated if no pair of ones are in an all-ones submatrix of A together. Let $i(A)$ be the maximum number of ones in an isolated set of A. The alternate definition of $r_{\mathrm{B}}(A)$ leads immediately to the bound $r_{\mathrm{B}}(A) \geqslant i(A)$. The Kronecker product of an $m \times n$ matrix A and a $p \times q$ matrix B is the $m p \times n q$ matrix $A \otimes B$ which can be expressed as an $m \times n$ block matrix with the $i j$ th block being B if $A_{i j}=1$ and a zero block otherwise. Theorem 2 appears in [2] and provides bounds on the Boolean rank of the Kronecker product of two matrices.

Theorem 2. Let A and B be Boolean matrices. Then

1. $\max \left\{i(A) r_{\mathrm{B}}(B), r_{\mathrm{B}}(A) i(B)\right\} \leqslant r_{\mathrm{B}}(A \otimes B) \leqslant r_{\mathrm{B}}(A) r_{\mathrm{B}}(B)$;
2. $i(A) i(B) \leqslant i(A \otimes B) \leqslant \min \left\{i(A) r_{\mathrm{B}}(B), r_{\mathrm{B}}(A) i(B)\right\}$.

The authors of [2] did not find an example where $r_{\mathrm{B}}(A \otimes B)<r_{\mathrm{B}}(A) r_{\mathrm{B}}(B)$, although they suggested $\bar{I}_{n} \otimes \bar{I}_{n}$ as a possible candidate. Note that $i\left(\bar{I}_{4}\right)=3$ and $r_{\mathrm{B}}\left(\bar{I}_{4}\right)=4$, so Theorem 2 implies $12 \leqslant r_{\mathrm{B}}\left(\bar{I}_{4} \otimes \bar{I}_{4}\right) \leqslant 16$. Using Theorem 3 below, it is possible to show that, in fact, $r_{\mathrm{B}}\left(\bar{I}_{4} \otimes \bar{I}_{4}\right)=12$. A careful justification shows that $r_{\mathrm{B}}(A)=i(A)$ for all $m \times n$ matrices A with $1 \leqslant m, n \leqslant 4$ and at most one of m and n is 4 . Consequently, $\bar{I}_{4} \otimes \bar{I}_{4}$ is the smallest such example in terms of order.

Before stating Theorem 3 and the construction which gives $r_{\mathrm{B}}\left(\bar{I}_{4} \otimes \bar{I}_{4}\right)=12$, some new terminology is necessary. For a Boolean rank 1 matrix $A=u v^{\mathrm{T}}$, define the opposite of A to be the Boolean rank 1 matrix $\tilde{A}=\bar{u} \bar{v}^{\mathrm{T}}$.

Theorem 3. Let A be an $m \times n$ binary matrix. Suppose there exists a set \mathscr{M} of Boolean rank-1 matrices with the properties:

1. $\sum_{M \in \mathscr{M}} M=A$ under Boolean arithmetic;
2. $M \in \mathscr{M}$ implies $\tilde{M} \in \mathscr{M}$;
3. For each (i, j) with $A_{i j}=1$,

$$
\sum_{M \in, M, M_{i j}=1}(M+\tilde{M})=A
$$

under Boolean arithmetic.
Then $r_{\mathrm{B}}(A \otimes A) \leqslant 2|\mathscr{M}|$.
Proof. By Theorem 2, $r_{\mathrm{B}}(M \otimes M)=r_{\mathrm{B}}(M \otimes \tilde{M})=1$ for each $M \in \mathscr{M}$. Thus, to show $r_{\mathrm{B}}(A \otimes A) \leqslant 2|\mathscr{M}|$, it suffices to show that $A \otimes A$ and $\sum_{M \in \mathscr{M}}[(M \otimes M)+$ $(M \otimes \tilde{M})]=\sum_{M \in \mathscr{M}} M \otimes(M+\tilde{M})$ are the same matrix. This can be accomplished by showing these two matrices agree block by block.

The $i j$ th block of $A \otimes A$ is $A_{i j} A$ and is either a zero block or A. The $i j$ th block of $\sum_{M \in \mathscr{M}} M \otimes(M+\tilde{M})$ is $\sum_{M \in \mathscr{M}} M_{i j}(M+\tilde{M})$ and so by property (3) is either a zero block or A. Since $A_{i j}=0$ if and only if $M_{i j}=0$ for all $M \in \mathscr{M}$, it follows that the $i j$ th block of $A \otimes A$ is a zero block if and only if the $i j$ th block of $\sum_{M \in M} M \otimes$ $(M+\tilde{M})$ is a zero block. Similarly, $A_{i j}=1$ if and only if $M_{i j}=1$ for some $M \in \mathscr{M}$ and consequently the $i j$ th block of $A \otimes A$ is non-zero (and hence A) if and only if the $i j$ th block of $\sum_{M \in \mathscr{M}} M \otimes(M+\tilde{M})$ is non-zero (and hence A).

To use Theorem 3 on \bar{I}_{4}, consider the following six Boolean rank-1 matrices:

$$
\left.\begin{array}{c}
\mathscr{M}=\left\{\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \\
\end{array}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\right\} .
$$

This set $\mathscr{\mathscr { U }}$ satisfies the three conditions of Theorem 3 for \bar{I}_{4}. Consequently, $r_{\mathrm{B}}\left(\bar{I}_{4} \otimes\right.$ $\left.\bar{I}_{4}\right)=12$.

Since the matrices in \mathscr{M} of Theorem 3 occur in pairs, $|\mathscr{M}|$ is even. Also, because every pair of ones in an isolated set of A must be in a distinct matrix/opposite pair, it follows that $|\mathscr{M}| \geqslant i(A)(i(A)-1)$. Note that for \bar{I}_{4} this bound is attained.

Although Theorem 3 provides an upper bound on $r_{\mathrm{B}}(A \otimes A)$, this bound will only be an improvement on the bound given in Theorem 2 when $|\mathscr{M}| \leqslant \frac{1}{2} r_{\mathrm{B}}(A)^{2}$.

References

[1] D. de Caen, D.A. Gregory, N.J. Pullman, The boolean rank of zero-one matrices, in: Proceedings of the Third Caribbean Conference on Combinatorics and Computing, Barbados, 1981, pp. 169-173.
[2] D. de Caen, D.A. Gregory, N.J. Pullman, The boolean rank of zero-one matrices II, in: Proceedings of the Fifth Caribbean Conference on Combinatorics and Computing, Barbados 1988, pp. 120-126.
[3] Faun C.C. Doherty, J.R. Lundgren, D.J. Siewert, Biclique covers and partitions of bipartite graphs and digraphs and related matrix ranks of $\{0,1\}$-matrices, Congr. Numer. 136 (1999) 73-96.
[4] D.A. Gregory, N.J. Pullman, Semiring rank: boolean rank and nonnegative rank factorizations, J. Combin. Inform. System Sci. 8 (3) (1983) 223-233.
[5] K.H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982.
[6] S.D. Monson, N.J. Pullman, R. Rees, A survey of clique and biclique coverings and factorizations of (0, 1)-matrices, Bull. ICA 14 (1995) 17-86.
[7] J. Orlin, Contentment in graph theory: covering graphs with cliques, Nederl. Akad. Wetensch. Proc. Ser. A 80 (1977) 406-424.

[^0]: E-mail address: 6vlw@qlink.queensu.ca (V.L. Watts).

